- C++ Basics
- C++ Home
- C++ Overview
- C++ Environment Setup
- C++ Basic Syntax
- C++ Comments
- C++ Data Types
- C++ Variable Types
- C++ Variable Scope
- C++ Constants/Literals
- C++ Modifier Types
- C++ Storage Classes
- C++ Operators
- C++ Loop Types
- C++ Decision Making
- C++ Functions
- C++ Numbers
- C++ Arrays
- C++ Strings
- C++ Pointers
- C++ References
- C++ Date & Time
- C++ Basic Input/Output
- C++ Data Structures
- C++ Object Oriented
- C++ Classes & Objects
- C++ Inheritance
- C++ Overloading
- C++ Polymorphism
- C++ Abstraction
- C++ Encapsulation
- C++ Interfaces
- C++ Advanced
- C++ Files and Streams
- C++ Exception Handling
- C++ Dynamic Memory
- C++ Namespaces
- C++ Templates
- C++ Preprocessor
- C++ Signal Handling
- C++ Multithreading
- C++ Web Programming
- C++ Useful Resources
- C++ Questions and Answers
- C++ Quick Guide
- C++ Object Oriented
- C++ STL Tutorial
- C++ Standard Library
- C++ Useful Resources
- C++ Discussion
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
C++ Templates
Templates are the foundation of generic programming, which involves writing code in a way that is independent of any particular type.
A template is a blueprint or formula for creating a generic class or a function. The library containers like iterators and algorithms are examples of generic programming and have been developed using template concept.
There is a single definition of each container, such as vector, but we can define many different kinds of vectors for example, vector <int> or vector <string>.
You can use templates to define functions as well as classes, let us see how they work −
Function Template
The general form of a template function definition is shown here −
template <class type> ret-type func-name(parameter list) {
// body of function
}
Here, type is a placeholder name for a data type used by the function. This name can be used within the function definition.
The following is the example of a function template that returns the maximum of two values −
#include <iostream>
#include <string>
using namespace std;
template <typename T>
inline T const& Max (T const& a, T const& b) {
return a < b ? b:a;
}
int main () {
int i = 39;
int j = 20;
cout << "Max(i, j): " << Max(i, j) << endl;
double f1 = 13.5;
double f2 = 20.7;
cout << "Max(f1, f2): " << Max(f1, f2) << endl;
string s1 = "Hello";
string s2 = "World";
cout << "Max(s1, s2): " << Max(s1, s2) << endl;
return 0;
}
If we compile and run above code, this would produce the following result −
Max(i, j): 39 Max(f1, f2): 20.7 Max(s1, s2): World
Class Template
Just as we can define function templates, we can also define class templates. The general form of a generic class declaration is shown here −
template <class type> class class-name {
.
.
.
}
Here, type is the placeholder type name, which will be specified when a class is instantiated. You can define more than one generic data type by using a comma-separated list.
Following is the example to define class Stack<> and implement generic methods to push and pop the elements from the stack −
#include <iostream>
#include <vector>
#include <cstdlib>
#include <string>
#include <stdexcept>
using namespace std;
template <class T>
class Stack {
private:
vector<T> elems; // elements
public:
void push(T const&); // push element
void pop(); // pop element
T top() const; // return top element
bool empty() const { // return true if empty.
return elems.empty();
}
};
template <class T>
void Stack<T>::push (T const& elem) {
// append copy of passed element
elems.push_back(elem);
}
template <class T>
void Stack<T>::pop () {
if (elems.empty()) {
throw out_of_range("Stack<>::pop(): empty stack");
}
// remove last element
elems.pop_back();
}
template <class T>
T Stack<T>::top () const {
if (elems.empty()) {
throw out_of_range("Stack<>::top(): empty stack");
}
// return copy of last element
return elems.back();
}
int main() {
try {
Stack<int> intStack; // stack of ints
Stack<string> stringStack; // stack of strings
// manipulate int stack
intStack.push(7);
cout << intStack.top() <<endl;
// manipulate string stack
stringStack.push("hello");
cout << stringStack.top() << std::endl;
stringStack.pop();
stringStack.pop();
} catch (exception const& ex) {
cerr << "Exception: " << ex.what() <<endl;
return -1;
}
}
If we compile and run above code, this would produce the following result −
7 hello Exception: Stack<>::pop(): empty stack