- Big Data Analytics Tutorial
- Big Data Analytics - Home
- Big Data Analytics - Overview
- Big Data Analytics - Data Life Cycle
- Big Data Analytics - Methodology
- Core Deliverables
- Key Stakeholders
- Big Data Analytics - Data Analyst
- Big Data Analytics - Data Scientist
- Big Data Analytics Project
- Data Analytics - Problem Definition
- Big Data Analytics - Data Collection
- Big Data Analytics - Cleansing data
- Big Data Analytics - Summarizing
- Big Data Analytics - Data Exploration
- Data Visualization
- Big Data Analytics Methods
- Big Data Analytics - Introduction to R
- Data Analytics - Introduction to SQL
- Big Data Analytics - Charts & Graphs
- Big Data Analytics - Data Tools
- Data Analytics - Statistical Methods
- Advanced Methods
- Machine Learning for Data Analysis
- Naive Bayes Classifier
- K-Means Clustering
- Association Rules
- Big Data Analytics - Decision Trees
- Logistic Regression
- Big Data Analytics - Time Series
- Big Data Analytics - Text Analytics
- Big Data Analytics - Online Learning
- Big Data Analytics Useful Resources
- Big Data Analytics - Quick Guide
- Big Data Analytics - Resources
- Big Data Analytics - Discussion
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Big Data Analytics - Introduction to SQL
SQL stands for structured query language. It is one of the most widely used languages for extracting data from databases in traditional data warehouses and big data technologies. In order to demonstrate the basics of SQL we will be working with examples. In order to focus on the language itself, we will be using SQL inside R. In terms of writing SQL code this is exactly as would be done in a database.
The core of SQL are three statements: SELECT, FROM and WHERE. The following examples make use of the most common use cases of SQL. Navigate to the folder bda/part2/SQL_introduction and open the SQL_introduction.Rproj file. Then open the 01_select.R script. In order to write SQL code in R we need to install the sqldf package as demonstrated in the following code.
# Install the sqldf package install.packages('sqldf') # load the library library('sqldf') library(nycflights13) # We will be working with the fligths dataset in order to introduce SQL # Let’s take a look at the table str(flights) # Classes 'tbl_d', 'tbl' and 'data.frame': 336776 obs. of 16 variables: # $ year : int 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ... # $ month : int 1 1 1 1 1 1 1 1 1 1 ... # $ day : int 1 1 1 1 1 1 1 1 1 1 ... # $ dep_time : int 517 533 542 544 554 554 555 557 557 558 ... # $ dep_delay: num 2 4 2 -1 -6 -4 -5 -3 -3 -2 ... # $ arr_time : int 830 850 923 1004 812 740 913 709 838 753 ... # $ arr_delay: num 11 20 33 -18 -25 12 19 -14 -8 8 ... # $ carrier : chr "UA" "UA" "AA" "B6" ... # $ tailnum : chr "N14228" "N24211" "N619AA" "N804JB" ... # $ flight : int 1545 1714 1141 725 461 1696 507 5708 79 301 ... # $ origin : chr "EWR" "LGA" "JFK" "JFK" ... # $ dest : chr "IAH" "IAH" "MIA" "BQN" ... # $ air_time : num 227 227 160 183 116 150 158 53 140 138 ... # $ distance : num 1400 1416 1089 1576 762 ... # $ hour : num 5 5 5 5 5 5 5 5 5 5 ... # $ minute : num 17 33 42 44 54 54 55 57 57 58 ...
The select statement is used to retrieve columns from tables and do calculations on them. The simplest SELECT statement is demonstrated in ej1. We can also create new variables as shown in ej2.
### SELECT statement ej1 = sqldf(" SELECT dep_time ,dep_delay ,arr_time ,carrier ,tailnum FROM flights ") head(ej1) # dep_time dep_delay arr_time carrier tailnum # 1 517 2 830 UA N14228 # 2 533 4 850 UA N24211 # 3 542 2 923 AA N619AA # 4 544 -1 1004 B6 N804JB # 5 554 -6 812 DL N668DN # 6 554 -4 740 UA N39463 # In R we can use SQL with the sqldf function. It works exactly the same as in a database # The data.frame (in this case flights) represents the table we are querying and goes in the FROM statement # We can also compute new variables in the select statement using the syntax: # old_variables as new_variable ej2 = sqldf(" SELECT arr_delay - dep_delay as gain, carrier FROM flights ") ej2[1:5, ] # gain carrier # 1 9 UA # 2 16 UA # 3 31 AA # 4 -17 B6 # 5 -19 DL
One of the most common used features of SQL is the group by statement. This allows to compute a numeric value for different groups of another variable. Open the script 02_group_by.R.
### GROUP BY # Computing the average ej3 = sqldf(" SELECT avg(arr_delay) as mean_arr_delay, avg(dep_delay) as mean_dep_delay, carrier FROM flights GROUP BY carrier ") # mean_arr_delay mean_dep_delay carrier # 1 7.3796692 16.725769 9E # 2 0.3642909 8.586016 AA # 3 -9.9308886 5.804775 AS # 4 9.4579733 13.022522 B6 # 5 1.6443409 9.264505 DL # 6 15.7964311 19.955390 EV # 7 21.9207048 20.215543 F9 # 8 20.1159055 18.726075 FL # 9 -6.9152047 4.900585 HA # 10 10.7747334 10.552041 MQ # 11 11.9310345 12.586207 OO # 12 3.5580111 12.106073 UA # 13 2.1295951 3.782418 US # 14 1.7644644 12.869421 VX # 15 9.6491199 17.711744 WN # 16 15.5569853 18.996330 YV # Other aggregations ej4 = sqldf(" SELECT avg(arr_delay) as mean_arr_delay, min(dep_delay) as min_dep_delay, max(dep_delay) as max_dep_delay, carrier FROM flights GROUP BY carrier ") # We can compute the minimun, mean, and maximum values of a numeric value ej4 # mean_arr_delay min_dep_delay max_dep_delay carrier # 1 7.3796692 -24 747 9E # 2 0.3642909 -24 1014 AA # 3 -9.9308886 -21 225 AS # 4 9.4579733 -43 502 B6 # 5 1.6443409 -33 960 DL # 6 15.7964311 -32 548 EV # 7 21.9207048 -27 853 F9 # 8 20.1159055 -22 602 FL # 9 -6.9152047 -16 1301 HA # 10 10.7747334 -26 1137 MQ # 11 11.9310345 -14 154 OO # 12 3.5580111 -20 483 UA # 13 2.1295951 -19 500 US # 14 1.7644644 -20 653 VX # 15 9.6491199 -13 471 WN # 16 15.5569853 -16 387 YV ### We could be also interested in knowing how many observations each carrier has ej5 = sqldf(" SELECT carrier, count(*) as count FROM flights GROUP BY carrier ") ej5 # carrier count # 1 9E 18460 # 2 AA 32729 # 3 AS 714 # 4 B6 54635 # 5 DL 48110 # 6 EV 54173 # 7 F9 685 # 8 FL 3260 # 9 HA 342 # 10 MQ 26397 # 11 OO 32 # 12 UA 58665 # 13 US 20536 # 14 VX 5162 # 15 WN 12275 # 16 YV 601
The most useful feature of SQL are joins. A join means that we want to combine table A and table B in one table using one column to match the values of both tables. There are different types of joins, in practical terms, to get started these will be the most useful ones: inner join and left outer join.
# Let’s create two tables: A and B to demonstrate joins. A = data.frame(c1 = 1:4, c2 = letters[1:4]) B = data.frame(c1 = c(2,4,5,6), c2 = letters[c(2:5)]) A # c1 c2 # 1 a # 2 b # 3 c # 4 d B # c1 c2 # 2 b # 4 c # 5 d # 6 e ### INNER JOIN # This means to match the observations of the column we would join the tables by. inner = sqldf(" SELECT A.c1, B.c2 FROM A INNER JOIN B ON A.c1 = B.c1 ") # Only the rows that match c1 in both A and B are returned inner # c1 c2 # 2 b # 4 c ### LEFT OUTER JOIN # the left outer join, sometimes just called left join will return the # first all the values of the column used from the A table left = sqldf(" SELECT A.c1, B.c2 FROM A LEFT OUTER JOIN B ON A.c1 = B.c1 ") # Only the rows that match c1 in both A and B are returned left # c1 c2 # 1 <NA> # 2 b # 3 <NA> # 4 c