- Data Structures & Algorithms
- DSA - Home
- DSA - Overview
- DSA - Environment Setup
- Algorithm
- DSA - Algorithms Basics
- DSA - Asymptotic Analysis
- DSA - Greedy Algorithms
- DSA - Divide and Conquer
- DSA - Dynamic Programming
- Data Structures
- DSA - Data Structure Basics
- DSA - Data Structures and Types
- DSA - Array Data Structure
- Linked Lists
- DSA - Linked List Basics
- DSA - Doubly Linked List
- DSA - Circular Linked List
- Stack & Queue
- DSA - Stack
- DSA - Expression Parsing
- DSA - Queue
- Searching Techniques
- DSA - Linear Search
- DSA - Binary Search
- DSA - Interpolation Search
- DSA - Hash Table
- Sorting Techniques
- DSA - Sorting Algorithms
- DSA - Bubble Sort
- DSA - Insertion Sort
- DSA - Selection Sort
- DSA - Merge Sort
- DSA - Shell Sort
- DSA - Quick Sort
- Graph Data Structure
- DSA - Graph Data Structure
- DSA - Depth First Traversal
- DSA - Breadth First Traversal
- Tree Data Structure
- DSA - Tree Data Structure
- DSA - Tree Traversal
- DSA - Binary Search Tree
- DSA - AVL Tree
- DSA - Red Black Trees
- DSA - B Trees
- DSA - B+ Trees
- DSA - Splay Trees
- DSA - Spanning Tree
- DSA - Tries
- DSA - Heap
- Recursion
- DSA - Recursion Basics
- DSA - Tower of Hanoi
- DSA - Fibonacci Series
- DSA Useful Resources
- DSA - Questions and Answers
- DSA - Quick Guide
- DSA - Useful Resources
- DSA - Discussion
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Data Structure and Algorithms - Linked List
If arrays accommodate similar types of data types, linked lists consist of elements with different data types that are also arranged sequentially.
But how are these linked lists created?
A linked list is a collection of “nodes” connected together via links. These nodes consist of the data to be stored and a pointer to the address of the next node within the linked list. In the case of arrays, the size is limited to the definition, but in linked lists, there is no defined size. Any amount of data can be stored in it and can be deleted from it.
There are three types of linked lists −
Singly Linked List − The nodes only point to the address of the next node in the list.
Doubly Linked List − The nodes point to the addresses of both previous and next nodes.
Circular Linked List − The last node in the list will point to the first node in the list. It can either be singly linked or doubly linked.
Linked List Representation
Linked list can be visualized as a chain of nodes, where every node points to the next node.
As per the above illustration, following are the important points to be considered.
Linked List contains a link element called first (head).
Each link carries a data field(s) and a link field called next.
Each link is linked with its next link using its next link.
Last link carries a link as null to mark the end of the list.
Types of Linked List
Following are the various types of linked list.
Singly Linked Lists
Singly linked lists contain two “buckets” in one node; one bucket holds the data and the other bucket holds the address of the next node of the list. Traversals can be done in one direction only as there is only a single link between two nodes of the same list.
Doubly Linked Lists
Doubly Linked Lists contain three “buckets” in one node; one bucket holds the data and the other buckets hold the addresses of the previous and next nodes in the list. The list is traversed twice as the nodes in the list are connected to each other from both sides.
Circular Linked Lists
Circular linked lists can exist in both singly linked list and doubly linked list.
Since the last node and the first node of the circular linked list are connected, the traversal in this linked list will go on forever until it is broken.
Basic Operations in the Linked Lists
The basic operations in the linked lists are insertion, deletion, searching, display, and deleting an element at a given key. These operations are performed on Singly Linked Lists as given below −
Insertion − Adds an element at the beginning of the list.
Deletion − Deletes an element at the beginning of the list.
Display − Displays the complete list.
Search − Searches an element using the given key.
Delete − Deletes an element using the given key.
Insertion Operation
Adding a new node in linked list is a more than one step activity. We shall learn this with diagrams here. First, create a node using the same structure and find the location where it has to be inserted.
Imagine that we are inserting a node B (NewNode), between A (LeftNode) and C (RightNode). Then point B.next to C −
NewNode.next −> RightNode;
It should look like this −
Now, the next node at the left should point to the new node.
LeftNode.next −> NewNode;
This will put the new node in the middle of the two. The new list should look like this −
Insertion in linked list can be done in three different ways. They are explained as follows −
Insertion at Beginning
In this operation, we are adding an element at the beginning of the list.
Algorithm
1. START 2. Create a node to store the data 3. Check if the list is empty 4. If the list is empty, add the data to the node and assign the head pointer to it. 5 If the list is not empty, add the data to a node and link to the current head. Assign the head to the newly added node. 6. END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <string.h> #include <stdlib.h> struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; printf("\n["); //start from the beginning while(p != NULL) { printf(" %d ",p->data); p = p->next; } printf("]"); } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void main(){ int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); printf("Linked List: "); // print list printList(); }
Output
Linked List: [ 50 44 30 22 12 ]
#include <bits/stdc++.h> #include <string> using namespace std; struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; cout << "\n["; //start from the beginning while(p != NULL) { cout << " " << p->data << " "; p = p->next; } cout << "]"; } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } int main(){ insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); cout << "Linked List: "; // print list printList(); }
Output
Linked List: [ 50 44 30 22 12 ]
public class Linked_List { static class node { int data; node next; node (int value) { data = value; next = null; } } static node head; // display the list static void printList() { node p = head; System.out.print("\n["); //start from the beginning while(p != null) { System.out.print(" " + p.data + " "); p = p.next; } System.out.print("]"); } //insertion at the beginning static void insertatbegin(int data) { //create a link node lk = new node(data);; // point it to old first node lk.next = head; //point first to new first node head = lk; } public static void main(String args[]) { int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); insertatbegin(33); System.out.println("Linked List: "); // print list printList(); } }
Output
Linked List: [33 50 44 30 22 12 ]
class Node: def __init__(self, data=None): self.data = data self.next = None class SLL: def __init__(self): self.head = None # Print the linked list def listprint(self): printval = self.head print("Linked List: ") while printval is not None: print (printval.data) printval = printval.next def AddAtBeginning(self,newdata): NewNode = Node(newdata) # Update the new nodes next val to existing node NewNode.next = self.head self.head = NewNode l1 = SLL() l1.head = Node("731") e2 = Node("672") e3 = Node("63") l1.head.next = e2 e2.next = e3 l1.AddAtBeginning("122") l1.listprint()
Output
Linked List: 122 731 672 63
Insertion at Ending
In this operation, we are adding an element at the ending of the list.
Algorithm
1. START 2. Create a new node and assign the data 3. Find the last node 4. Point the last node to new node 5. END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <string.h> #include <stdlib.h> struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; printf("\n["); //start from the beginning while(p != NULL) { printf(" %d ",p->data); p = p->next; } printf("]"); } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void insertatend(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; struct node *linkedlist = head; // point it to old first node while(linkedlist->next != NULL) linkedlist = linkedlist->next; //point first to new first node linkedlist->next = lk; } void main(){ int k=0; insertatbegin(12); insertatend(22); insertatend(30); insertatend(44); insertatend(50); printf("Linked List: "); // print list printList(); }
Output
Linked List: [ 12 22 30 44 50 ]
#include <bits/stdc++.h> #include <string> using namespace std; struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; cout << "\n["; //start from the beginning while(p != NULL) { cout << " " << p->data << " "; p = p->next; } cout << "]"; } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void insertatend(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; struct node *linkedlist = head; // point it to old first node while(linkedlist->next != NULL) linkedlist = linkedlist->next; //point first to new first node linkedlist->next = lk; } int main(){ insertatbegin(12); insertatend(22); insertatbegin(30); insertatend(44); insertatbegin(50); cout << "Linked List: "; // print list printList(); }
Output
Linked List: [ 50 30 12 22 44 ]
public class Linked_List { static class node { int data; node next; node (int value) { data = value; next = null; } } static node head; // display the list static void printList() { node p = head; System.out.print("\n["); //start from the beginning while(p != null) { System.out.print(" " + p.data + " "); p = p.next; } System.out.print("]"); } //insertion at the beginning static void insertatbegin(int data) { //create a link node lk = new node(data);; // point it to old first node lk.next = head; //point first to new first node head = lk; } static void insertatend(int data) { //create a link node lk = new node(data); node linkedlist = head; // point it to old first node while(linkedlist.next != null) linkedlist = linkedlist.next; //point first to new first node linkedlist.next = lk; } public static void main(String args[]) { int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatend(44); insertatend(50); insertatend(33); System.out.println("Linked List: "); // print list printList(); } }
Output
Linked List: [ 30 22 12 44 50 33 ]
class Node: def __init__(self, data=None): self.data = data self.next = None class LL: def __init__(self): self.head = None def listprint(self): val = self.head print("Linked List:") while val is not None: print(val.data) val = val.next l1 = LL() l1.head = Node("23") l2 = Node("12") l3 = Node("7") l4 = Node("14") l5 = Node("61") # Linking the first Node to second node l1.head.next = l2 # Linking the second Node to third node l2.next = l3 l3.next = l4 l4.next = l5 l1.listprint()
Output
Linked List: 23 12 7 14 61
Insertion at a Given Position
In this operation, we are adding an element at any position within the list.
Algorithm
1. START 2. Create a new node and assign data to it 3. Iterate until the node at position is found 4. Point first to new first node 5. END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <string.h> #include <stdlib.h> struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; printf("\n["); //start from the beginning while(p != NULL) { printf(" %d ",p->data); p = p->next; } printf("]"); } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void insertafternode(struct node *list, int data){ struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; lk->next = list->next; list->next = lk; } void main(){ int k=0; insertatbegin(12); insertatbegin(22); insertafternode(head->next, 30); printf("Linked List: "); // print list printList(); }
Output
Linked List: [ 22 12 30 ]
#include <bits/stdc++.h> #include <string> using namespace std; struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; cout << "\n["; //start from the beginning while(p != NULL) { cout << " " << p->data << " "; p = p->next; } cout << "]"; } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void insertafternode(struct node *list, int data){ struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; lk->next = list->next; list->next = lk; } int main(){ insertatbegin(12); insertatbegin(22); insertatbegin(30); insertafternode(head->next,44); insertafternode(head->next->next, 50); cout << "Linked List: "; // print list printList(); }
Output
Linked List: [ 30 22 44 50 12 ]
public class Linked_List { static class node { int data; node next; node (int value) { data = value; next = null; } } static node head; // display the list static void printList() { node p = head; System.out.print("\n["); //start from the beginning while(p != null) { System.out.print(" " + p.data + " "); p = p.next; } System.out.print("]"); } //insertion at the beginning static void insertatbegin(int data) { //create a link node lk = new node(data);; // point it to old first node lk.next = head; //point first to new first node head = lk; } static void insertafternode(node list, int data) { node lk = new node(data); lk.next = list.next; list.next = lk; } public static void main(String args[]) { int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertafternode(head.next, 50); insertafternode(head.next.next, 33); System.out.println("Linked List: "); // print list printList(); } }
Output
Linked List: [44 30 50 33 22 12 ]
class Node: def __init__(self, data=None): self.data = data self.next = None class SLL: def __init__(self): self.head = None # Print the linked list def listprint(self): printval = self.head print("Linked List: ") while printval is not None: print (printval.data) printval = printval.next # Function to add node def InsertAtPos(self,nodeatpos,newdata): if nodeatpos is None: print("The mentioned node is absent") return NewNode = Node(newdata) NewNode.next = nodeatpos.next nodeatpos.next = NewNode l1 = SLL() l1.head = Node("731") e2 = Node("672") e3 = Node("63") l1.head.next = e2 e2.next = e3 l1.InsertAtPos(l1.head.next, "122") l1.listprint()
Output
Linked List: 731 672 122 63
Deletion Operation
Deletion is also a more than one step process. We shall learn with pictorial representation. First, locate the target node to be removed, by using searching algorithms.
The left (previous) node of the target node now should point to the next node of the target node −
LeftNode.next −> TargetNode.next;
This will remove the link that was pointing to the target node. Now, using the following code, we will remove what the target node is pointing at.
TargetNode.next −> NULL;
We need to use the deleted node. We can keep that in memory otherwise we can simply deallocate memory and wipe off the target node completely.
Similar steps should be taken if the node is being inserted at the beginning of the list. While inserting it at the end, the second last node of the list should point to the new node and the new node will point to NULL.
Deletion in linked lists is also performed in three different ways. They are as follows −
Deletion at Beginning
In this deletion operation of the linked, we are deleting an element from the beginning of the list. For this, we point the head to the second node.
Algorithm
1. START 2. Assign the head pointer to the next node in the list 3. END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <string.h> #include <stdlib.h> struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; printf("\n["); //start from the beginning while(p != NULL) { printf(" %d ",p->data); p = p->next; } printf("]"); } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void deleteatbegin(){ head = head->next; } void main(){ int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(40); insertatbegin(55); printf("Linked List: "); // print list printList(); deleteatbegin(); printf("\nLinked List after deletion: "); // print list printList(); }
Output
Linked List: [ 55 40 30 22 12 ] Linked List after deletion: [ 40 30 22 12 ]
#include <bits/stdc++.h> #include <string> using namespace std; struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; cout << "\n["; //start from the beginning while(p != NULL) { cout << " " << p->data << " "; p = p->next; } cout << "]"; } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void deleteatbegin(){ head = head->next; } int main(){ insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); cout << "Linked List: "; // print list printList(); deleteatbegin(); cout << "Linked List after deletion: "; printList(); }
Output
Linked List: [ 50 44 30 22 12 ] Linked List after deletion: [ 44 30 22 12 ]
public class Linked_List { static class node { int data; node next; node (int value) { data = value; next = null; } } static node head; // display the list static void printList() { node p = head; System.out.print("\n["); //start from the beginning while(p != null) { System.out.print(" " + p.data + " "); p = p.next; } System.out.print("]"); } //insertion at the beginning static void insertatbegin(int data) { //create a link node lk = new node(data);; // point it to old first node lk.next = head; //point first to new first node head = lk; } static void deleteatbegin() { head = head.next; } public static void main(String args[]) { int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); insertatbegin(33); System.out.println("Linked List: "); // print list printList(); deleteatbegin(); System.out.println("\nLinked List after deletion: "); // print list printList(); } }
Output
Linked List: [ 33 50 44 30 22 12 ] Linked List after deletion: [50 44 30 22 12 ]
Deletion at Ending
In this deletion operation of the linked, we are deleting an element from the ending of the list.
Algorithm
1. START 2. Iterate until you find the second last element in the list. 3. Assign NULL to the second last element in the list. 4. END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <string.h> #include <stdlib.h> struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; printf("\n["); //start from the beginning while(p != NULL) { printf(" %d ",p->data); p = p->next; } printf("]"); } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void deleteatend(){ struct node *linkedlist = head; while (linkedlist->next->next != NULL) linkedlist = linkedlist->next; linkedlist->next = NULL; } void main(){ int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(40); insertatbegin(55); printf("Linked List: "); // print list printList(); deleteatend(); printf("\nLinked List after deletion: "); // print list printList(); }
Output
Linked List: [ 55 40 30 22 12 ] Linked List after deletion: [ 55 40 30 22 ]
#include <bits/stdc++.h> #include <string> using namespace std; struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // Displaying the list void printList(){ struct node *p = head; while(p != NULL) { cout << " " << p->data << " "; p = p->next; } } // Insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void deleteatend(){ struct node *linkedlist = head; while (linkedlist->next->next != NULL) linkedlist = linkedlist->next; linkedlist->next = NULL; } int main(){ insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); cout << "Linked List: "; // print list printList(); deleteatend(); cout << "\nLinked List after deletion: "; printList(); }
Output
Linked List: 50 44 30 22 12 Linked List after deletion: 50 44 30 22
public class Linked_List { static class node { int data; node next; node (int value) { data = value; next = null; } } static node head; // display the list static void printList() { node p = head; System.out.print("\n["); //start from the beginning while(p != null) { System.out.print(" " + p.data + " "); p = p.next; } System.out.print("]"); } //insertion at the beginning static void insertatbegin(int data) { //create a link node lk = new node(data);; // point it to old first node lk.next = head; //point first to new first node head = lk; } static void deleteatend() { node linkedlist = head; while (linkedlist.next.next != null) linkedlist = linkedlist.next; linkedlist.next = null; } public static void main(String args[]) { int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); insertatbegin(33); System.out.println("Linked List: "); // print list printList(); //deleteatbegin(); deleteatend(); System.out.println("\nLinked List after deletion: "); // print list printList(); } }
Output
Linked List: [ 33 50 44 30 22 12 ] Linked List after deletion: [ 33 50 44 30 22 ]
Deletion at a Given Position
In this deletion operation of the linked, we are deleting an element at any position of the list.
Algorithm
1. START 2. Iterate until find the current node at position in the list 3. Assign the adjacent node of current node in the list to its previous node. 4. END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <string.h> #include <stdlib.h> struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; printf("\n["); //start from the beginning while(p != NULL) { printf(" %d ",p->data); p = p->next; } printf("]"); } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void deletenode(int key){ struct node *temp = head, *prev; if (temp != NULL && temp->data == key) { head = temp->next; return; } // Find the key to be deleted while (temp != NULL && temp->data != key) { prev = temp; temp = temp->next; } // If the key is not present if (temp == NULL) return; // Remove the node prev->next = temp->next; } void main(){ int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(40); insertatbegin(55); printf("Linked List: "); // print list printList(); deletenode(30); printf("\nLinked List after deletion: "); // print list printList(); }
Output
Linked List: [ 55 40 30 22 12 ] Linked List after deletion: [ 55 40 22 12 ]
#include <bits/stdc++.h> #include <string> using namespace std; struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; cout << "\n["; //start from the beginning while(p != NULL) { cout << " " << p->data << " "; p = p->next; } cout << "]"; } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void deletenode(int key){ struct node *temp = head, *prev; if (temp != NULL && temp->data == key) { head = temp->next; return; } // Find the key to be deleted while (temp != NULL && temp->data != key) { prev = temp; temp = temp->next; } // If the key is not present if (temp == NULL) return; // Remove the node prev->next = temp->next; } int main(){ insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); cout << "Linked List: "; // print list printList(); deletenode(30); cout << "Linked List after deletion: "; printList(); }
Output
Linked List: [ 50 44 30 22 12 ]Linked List after deletion: [ 50 44 22 12 ]
public class Linked_List { static class node { int data; node next; node (int value) { data = value; next = null; } } static node head; // display the list static void printList() { node p = head; System.out.print("\n["); //start from the beginning while(p != null) { System.out.print(" " + p.data + " "); p = p.next; } System.out.print("]"); } //insertion at the beginning static void insertatbegin(int data) { //create a link node lk = new node(data);; // point it to old first node lk.next = head; //point first to new first node head = lk; } static void deletenode(int key) { node temp = head; node prev = null; if (temp != null && temp.data == key) { head = temp.next; return; } // Find the key to be deleted while (temp != null && temp.data != key) { prev = temp; temp = temp.next; } // If the key is not present if (temp == null) return; // Remove the node prev.next = temp.next; } public static void main(String args[]) { int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); insertatbegin(33); System.out.println("Linked List: "); // print list printList(); //deleteatbegin(); //deleteatend(); deletenode(12); System.out.println("\nLinked List after deletion: "); // print list printList(); } }
Output
Linked List: [ 33 50 44 30 22 12 ] Linked List after deletion: [ 33 50 44 30 22 ]
Reverse Operation
This operation is a thorough one. We need to make the last node to be pointed by the head node and reverse the whole linked list.
First, we traverse to the end of the list. It should be pointing to NULL. Now, we shall make it point to its previous node −
We have to make sure that the last node is not the last node. So we'll have some temp node, which looks like the head node pointing to the last node. Now, we shall make all left side nodes point to their previous nodes one by one.
Except the node (first node) pointed by the head node, all nodes should point to their predecessor, making them their new successor. The first node will point to NULL.
We'll make the head node point to the new first node by using the temp node.
Algorithm
Step by step process to reverse a linked list is as follows −
1 START 2. We use three pointers to perform the reversing: prev, next, head. 3. Point the current node to head and assign its next value to the prev node. 4. Iteratively repeat the step 3 for all the nodes in the list. 5. Assign head to the prev node.
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <string.h> #include <stdlib.h> struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; printf("\n["); //start from the beginning while(p != NULL) { printf(" %d ",p->data); p = p->next; } printf("]"); } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void reverseList(struct node** head){ struct node *prev = NULL, *cur=*head, *tmp; while(cur!= NULL) { tmp = cur->next; cur->next = prev; prev = cur; cur = tmp; } *head = prev; } void main(){ int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(40); insertatbegin(55); printf("Linked List: "); // print list printList(); reverseList(&head); printf("\nReversed Linked List: "); printList(); }
Output
Linked List: [ 55 40 30 22 12 ] Reversed Linked List: [ 12 22 30 40 55 ]
#include <bits/stdc++.h> struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; printf("\n["); //start from the beginning while(p != NULL) { printf(" %d ",p->data); p = p->next; } printf("]"); } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void reverseList(struct node** head){ struct node *prev = NULL, *cur=*head, *tmp; while(cur!= NULL) { tmp = cur->next; cur->next = prev; prev = cur; cur = tmp; } *head = prev; } int main(){ int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(40); insertatbegin(55); printf("Linked List: "); // print list printList(); reverseList(&head); printf("\nReversed Linked List: "); printList(); return 0; }
Output
Linked List: [ 55 40 30 22 12 ] Reversed Linked List: [ 12 22 30 40 55 ]
public class Linked_List { static Node head; static class Node { int data; Node next; Node (int value) { data = value; next = null; } } // display the list static void printList(Node node) { System.out.print("\n["); //start from the beginning while(node != null) { System.out.print(" " + node.data + " "); node = node.next; } System.out.print("]"); } static Node reverseList(Node head) { Node prev = null; Node cur = head; Node temp = null; while (cur != null) { temp = cur.next; cur.next = prev; prev = cur; cur = temp; } head = prev; return head; } public static void main(String args[]) { Linked_List list = new Linked_List(); list.head = new Node(33); list.head.next = new Node(50); list.head.next.next = new Node(44); list.head.next.next.next = new Node(22); list.head.next.next.next.next = new Node(12); System.out.println("Linked List: "); // print list list.printList(head); head = list.reverseList(head); System.out.println("\nReversed linked list "); list.printList(head); } }
Output
Linked List: [ 33 50 44 22 12 ] Reversed linked list [ 12 22 44 50 33 ]
class Node: def __init__(self, data=None): self.data = data self.next = None class SLL: def __init__(self): self.head = None # Print the linked list def listprint(self): printval = self.head print("Linked List: ") while printval is not None: print (printval.data) printval = printval.next def reverse(self): prev = None curr = self.head while(curr is not None): next = curr.next curr.next = prev prev = curr curr = next self.head = prev l1 = SLL() l1.head = Node("731") e2 = Node("672") e3 = Node("63") l1.head.next = e2 e2.next = e3 l1.listprint() l1.reverse() print("After reversing: ") l1.listprint()
Output
Linked List: 731 672 63 After reversing: Linked List: 63 672 731
Search Operation
Searching for an element in the list using a key element. This operation is done in the same way as array search; comparing every element in the list with the key element given.
Algorithm
1 START 2 If the list is not empty, iteratively check if the list contains the key 3 If the key element is not present in the list, unsuccessful search 4 END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <string.h> #include <stdlib.h> struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; printf("\n["); //start from the beginning while(p != NULL) { printf(" %d ",p->data); p = p->next; } printf("]"); } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } int searchlist(int key){ struct node *temp = head; while(temp != NULL) { if (temp->data == key) { return 1; } temp=temp->next; } return 0; } void main(){ int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(40); insertatbegin(55); printf("Linked List: "); // print list printList(); k = searchlist(30); if (k == 1) printf("\nElement is found"); else printf("\nElement is not present in the list"); }
Output
Linked List: [ 55 40 30 22 12 ] Element is found
#include <bits/stdc++.h> #include <string> using namespace std; struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; cout << "\n["; //start from the beginning while(p != NULL) { cout << " " << p->data << " "; p = p->next; } cout << "]"; } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } int searchlist(int key){ struct node *temp = head; while(temp != NULL) { if (temp->data == key) { return 1; } temp=temp->next; } return 0; } int main(){ int k = 0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); cout << "Linked List: "; // print list printList(); k = searchlist(16); if (k == 1) cout << "\nElement is found"; else cout << "\nElement is not present in the list"; }
Output
Linked List: [ 50 44 30 22 12 ] Element is not present in the list
public class Linked_List { static class node { int data; node next; node (int value) { data = value; next = null; } } static node head; // display the list static void printList() { node p = head; System.out.print("\n["); //start from the beginning while(p != null) { System.out.print(" " + p.data + " "); p = p.next; } System.out.print("]"); } //insertion at the beginning static void insertatbegin(int data) { //create a link node lk = new node(data);; // point it to old first node lk.next = head; //point first to new first node head = lk; } static int searchlist(int key) { node temp = head; while(temp != null) { if (temp.data == key) { return 1; } temp=temp.next; } return 0; } public static void main(String args[]) { int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); insertatbegin(33); System.out.println("Linked List: "); // print list printList(); k = searchlist(44); if (k == 1) System.out.println("\nElement is found"); else System.out.println("\nElement is not present in the list"); } }
Output
Linked List: [33 50 44 30 22 12 ] Element is found
class Node: def __init__(self, data=None): self.data = data self.next = None class SLL: def __init__(self): self.head = None def search(self, x): count = 0 # Initialize current to head current = self.head # loop till current not equal to None while current != None: if current.data == x: print("data found") count = count + 1 current = current.next if count == 0: print("Data Not found") l1 = SLL() l1.head = Node("731") e2 = Node("672") e3 = Node("63") l1.head.next = e2 e2.next = e3 l1.search("63")
Output
data found
Traversal Operation
The traversal operation walks through all the elements of the list in an order and displays the elements in that order.
Algorithm
1. START 2. While the list is not empty and did not reach the end of the list, print the data in each node 3. END
Example
Following are the implementations of this operation in various programming languages −
#include <stdio.h> #include <string.h> #include <stdlib.h> struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // display the list void printList(){ struct node *p = head; printf("\n["); //start from the beginning while(p != NULL) { printf(" %d ",p->data); p = p->next; } printf("]"); } //insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } void main(){ int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); printf("Linked List: "); // print list printList(); }
Output
Linked List: [ 30 22 12 ]
#include <bits/stdc++.h> #include <string> using namespace std; struct node { int data; struct node *next; }; struct node *head = NULL; struct node *current = NULL; // Displaying the list void printList(){ struct node *p = head; while(p != NULL) { cout << " " << p->data << " "; p = p->next; } } // Insertion at the beginning void insertatbegin(int data){ //create a link struct node *lk = (struct node*) malloc(sizeof(struct node)); lk->data = data; // point it to old first node lk->next = head; //point first to new first node head = lk; } int main(){ insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); cout << "Linked List: "; // print list printList(); }
Output
Linked List: 50 44 30 22 12
public class Linked_List { static class node { int data; node next; node (int value) { data = value; next = null; } } static node head; // display the list static void printList() { node p = head; System.out.print("\n["); //start from the beginning while(p != null) { System.out.print(" " + p.data + " "); p = p.next; } System.out.print("]"); } //insertion at the beginning static void insertatbegin(int data) { //create a link node lk = new node(data);; // point it to old first node lk.next = head; //point first to new first node head = lk; } public static void main(String args[]) { int k=0; insertatbegin(12); insertatbegin(22); insertatbegin(30); insertatbegin(44); insertatbegin(50); insertatbegin(33); System.out.println("Linked List: "); // print list printList(); } }
Output
Linked List: [ 33 50 44 30 22 12 ]
class Node: def __init__(self, data=None): self.data = data self.next = None class SLL: def __init__(self): self.head = None # Print the linked list def listprint(self): printval = self.head print("Linked List: ") while printval is not None: print (printval.data) printval = printval.next l1 = SLL() l1.head = Node("731") e2 = Node("672") e3 = Node("63") l1.head.next = e2 e2.next = e3 l1.listprint()
Output
Linked List: 731 672 63
Implementation of Linked Lists
Let us look at the implementation of the linked list data structures below −
To know more about the linked list implementation of Linked Lists in C programming language, click here.
For the complete implementation of a Singly Linked List in C++ programming language, click here.
To learn more about the Java implementation of the Singly Linked Lists, click here.
To see the Python Implementation of the Singly Linked Lists, click here.