- SQL Tutorial
- SQL - Home
- SQL - Overview
- SQL - RDBMS Concepts
- SQL - Databases
- SQL - Syntax
- SQL - Data Types
- SQL - Operators
- SQL - Expressions
- SQL Database
- SQL - Create Database
- SQL - Drop Database
- SQL - Select Database
- SQL - Rename Database
- SQL - Show Database
- SQL - Backup Database
- SQL Table
- SQL - Create Table
- SQL - Show Tables
- SQL - Rename Table
- SQL - Truncate Table
- SQL - Clone Tables
- SQL - Temporary Tables
- SQL - Alter Tables
- SQL - Drop Table
- SQL - Delete Table
- SQL - Constraints
- SQL Queries
- SQL - Insert Query
- SQL - Select Query
- SQL - Select Into
- SQL - Insert Into Select
- SQL - Update Query
- SQL - Delete Query
- SQL - Sorting Results
- SQL Views
- SQL - Create Views
- SQL - Update Views
- SQL - Drop Views
- SQL - Rename Views
- SQL Operators and Clauses
- SQL - Where Clause
- SQL - Top Clause
- SQL - Distinct Clause
- SQL - Order By Clause
- SQL - Group By Clause
- SQL - Having Clause
- SQL - AND & OR
- SQL - BOOLEAN (BIT) Operator
- SQL - LIKE Operator
- SQL - IN Operator
- SQL - ANY, ALL Operators
- SQL - EXISTS Operator
- SQL - CASE
- SQL - NOT Operator
- SQL - NOT EQUAL
- SQL - IS NULL
- SQL - IS NOT NULL
- SQL - NOT NULL
- SQL - BETWEEN Operator
- SQL - UNION Operator
- SQL - UNION vs UNION ALL
- SQL - INTERSECT Operator
- SQL - EXCEPT Operator
- SQL - Aliases
- SQL Joins
- SQL - Using Joins
- SQL - Inner Join
- SQL - Left Join
- SQL - Right Join
- SQL - Cross Join
- SQL - Full Join
- SQL - Self Join
- SQL - Delete Join
- SQL - Update Join
- SQL - Left Join vs Right Join
- SQL - Union vs Join
- SQL Keys
- SQL - Unique Key
- SQL - Primary Key
- SQL - Foreign Key
- SQL - Composite Key
- SQL - Alternate Key
- SQL Indexes
- SQL - Indexes
- SQL - Create Index
- SQL - Drop Index
- SQL - Show Indexes
- SQL - Unique Index
- SQL - Clustered Index
- SQL - Non-Clustered Index
- Advanced SQL
- SQL - Wildcards
- SQL - Comments
- SQL - Injection
- SQL - Hosting
- SQL - Min & Max
- SQL - Null Functions
- SQL - Check Constraint
- SQL - Default Constraint
- SQL - Stored Procedures
- SQL - NULL Values
- SQL - Transactions
- SQL - Sub Queries
- SQL - Handling Duplicates
- SQL - Using Sequences
- SQL - Auto Increment
- SQL - Date & Time
- SQL - Cursors
- SQL - Common Table Expression
- SQL - Group By vs Order By
- SQL - IN vs EXISTS
- SQL - Database Tuning
- SQL Function Reference
- SQL - Date Functions
- SQL - String Functions
- SQL - Aggregate Functions
- SQL - Numeric Functions
- SQL - Text & Image Functions
- SQL - Statistical Functions
- SQL - Logical Functions
- SQL - Cursor Functions
- SQL - JSON Functions
- SQL - Conversion Functions
- SQL - Datatype Functions
- SQL Useful Resources
- SQL - Questions and Answers
- SQL - Quick Guide
- SQL - Useful Functions
- SQL - Useful Resources
- SQL - Discussion
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
SQL - Wildcard Operators
SQL Wildcards are special temporary characters which are used as substitutes for either a single character or multiple characters. They are used with the LIKE operator in SQL, to search for specified patterns in character strings or to compare multiple various strings etc.
This is a case-sensitive operator, which means that it will match only those strings that have the same case as the specified pattern.
Following are the most commonly used wildcards in SQL −
S.No. | Wildcard & Description |
---|---|
1 | The percent sign (%) Matches one or more characters. Note − MS Access uses the asterisk (*) wildcard character instead of the percent sign (%) wildcard character. |
2 | The underscore (_) Matches one character. Note − MS Access uses a question mark (?) instead of the underscore (_) to match any one character. |
The percent sign represents zero, one or multiple characters. The underscore represents a single number or a character. These symbols can be used in combinations.
Syntax
The basic syntax of a '%' and a '_' operator is as follows.
SELECT * FROM table_name WHERE column LIKE 'XXXX%' or SELECT * FROM table_name WHERE column LIKE '%XXXX%' or SELECT * FROM table_name WHERE column LIKE 'XXXX_' or SELECT * FROM table_name WHERE column LIKE '_XXXX' or SELECT * FROM table_name WHERE column LIKE '_XXXX_'
You can combine N number of conditions using the AND or the OR operators. Here, XXXX could be any numeric or string value.
Using Wildcards in SQL
The following table demonstrates different ways of using wildcards with the LIKE operator in a WHERE clause.
S.No. | Statement & Description |
---|---|
1 | WHERE SALARY LIKE '200%' Finds any values that start with 200. |
2 | WHERE SALARY LIKE '%200%' Finds any values that have 200 in any position. |
3 | WHERE SALARY LIKE '_00%' Finds any values that have 00 in the second and third positions. |
4 | WHERE SALARY LIKE '2_%_%' Finds any values that start with 2 and are at least 3 characters in length. |
5 | WHERE SALARY LIKE '%2' Finds any values that end with 2. |
6 | WHERE SALARY LIKE '_2%3' Finds any values that have a 2 in the second position and end with a 3. |
7 | WHERE SALARY LIKE '2___3' Finds any values in a five-digit number that start with 2 and end with 3. |
Example
In the following example, consider the CUSTOMERS table having the following records.
+----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | +----+----------+-----+-----------+----------+
The following code block would display all the records from the CUSTOMERS table where the SALARY starts with 200.
SQL> SELECT * FROM CUSTOMERS WHERE SALARY LIKE '200%';
Output
This would produce the following result.
+----+----------+-----+-----------+----------+ | ID | NAME | AGE | ADDRESS | SALARY | +----+----------+-----+-----------+----------+ | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 3 | kaushik | 23 | Kota | 2000.00 | +----+----------+-----+-----------+----------+